2017中考数学试卷含答案
2017中考数学试卷:A级基础题
A.(2,4) B.(-2,-4) C.(-4,2) D.(4,-2)
2.抛物线y=x2+bx+c的图象先向右平移2个单位长度,再向下平移3个单位长度,所得图象的函数解析式为y=(x-1)2-4,则b,c的值为( )
A.b=2,c=-6 B.b=2,c=0 C.b=-6,c=8 D.b=-6,c=2
3.如图3-4-11,二次函数y=ax2+bx+c的图象开口向上,对称轴为直线x=1,图象经过(3,0),下列结论中,正确的一项是( )
A.abc<0 B.2a+b<0 C.a-b+c<0 D.4ac-b2<0
4.二次函数y=ax2+bx的图象如图3-4-12,那么一次函数y=ax+b的图象大致是( )
5.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是( )
A.抛物线开口向上 B.抛物线的对称轴是x=1
C.当x=1时,y的最大值为-4 D.抛物线与x轴的交点为(-1,0),(3,0)
6.二次函数y=ax2+bx+c图象上部分点的坐标满足下表:
x … -3 -2 -1 0 1 …
y … -3 -2 -3 -6 -11 …
则该函数图象的顶点坐标为( )
A.(-3,-3) B.(-2,-2) C.(-1,-3) D.(0,-6)
7.若关于x的函数y=kx2+2x-1与x轴仅有一个公共点,则实数k的值为__________.
8.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的解析式______________.
9.已知抛物线y=-x2+bx+c经过点A(3,0),B(-1,0).
(1)求抛物线的解析式;
(2)求抛物线的顶点坐标.
2017中考数学试卷:B级中等题
10.已知二次函数y=x2-3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2-3x+m=0的两实数根是( )
A.x1=1,x2=-1 B.x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3
11.二次函数y=ax2+bx+c的图象如图3-4-13,给出下列结论:①2a+b>0;②b>a>c;③若-1
12.已知二次函数y=x2-2mx+m2-1.
(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;
(2)如图3-4-14,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;
(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若P点存在,求出P点的坐标;若P点不存在,请说明理由.
2017中考数学试卷:C级拔尖题
13.如图3-4-15,已知抛物线y=1a(x-2)(x+a)(a>0)与x轴交于点B,C,与y轴交于点E,且点B在点C的左侧.
(1)若抛物线过点M(-2,-2),求实数a的值;
(2)在(1)的条件下,解答下列问题;
①求出△BCE的面积;
②在抛物线的对称轴上找一点H,使CH+EH的值最小,直接写出点H的坐标.
14.已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0),B(x2,0),x1<0
(1)求证:n+4m=0;
(2)求m,n的值;
(3)当p>0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.
15.如图3-4-16,在平面直角坐标系中,顶点为(3,4)的抛物线交y轴于A点,交x轴与B,C两点(点B在点C的左侧),已知A点坐标为(0,-5).
(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明;
(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.